Biological activities of novel gyrase inhibitors of the aminocoumarin class.
نویسندگان
چکیده
Thirty-one aminocoumarin antibiotics derived from mutasynthesis experiments were investigated for their biological activities. Their inhibitory activities toward Escherichia coli DNA gyrase were determined in two different in vitro assays: an ATPase assay and a DNA supercoiling assay. The assays gave a similar rank order of the activities of the compounds tested, although the absolute 50% inhibitory concentrations (IC(50)s) obtained in each assay were different. To confirm that the compounds also acted as gyrase inhibitors in vivo, reporter gene assays were carried out with E. coli by using gyrA and sulA promoter fusions with the luxCDABE operon. A strong induction of both promoters was observed for those compounds that showed gyrase inhibitory activity in the biochemical assays. Compounds carrying analogs of the prenylated benzoyl moiety (ring A) of clorobiocin that were structurally very different showed high levels of activity both in the biochemical assay and in the reporter gene assay, indicating that the structure of this moiety can be varied considerably without a loss of affinity for bacterial gyrase. The experimentally determined IC(50)s were compared to the binding energies calculated in silico, which indicated that a shift of the pyrrole carboxylic acid moiety from the O-3'' to the O-2'' position of the deoxysugar moiety has a significant impact on the binding mode of the compounds. The aminocoumarin compounds were also investigated for their MICs against different bacterial pathogens. Several compounds showed high levels of activity against staphylococci, including a methicillin-resistant Staphylococcus aureus strain. However, they showed only poor activities against gram-negative strains.
منابع مشابه
Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics.
OBJECTIVES Aminocoumarin antibiotics are potent inhibitors of bacterial DNA gyrase. We investigated the inhibitory and antibacterial activity of naturally occurring aminocoumarin antibiotics and six structural analogues (novclobiocins) against DNA gyrase and DNA topoisomerase IV from Escherichia coli and Staphylococcus aureus as well as the effect of potassium and sodium glutamate on the activi...
متن کاملSimocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action.
We have characterized the interaction of a new class of antibiotics, simocyclinones, with bacterial DNA gyrase. Even though their structures include an aminocoumarin moiety, a key feature of novobiocin, coumermycin A(1), and clorobiocin, which also target gyrase, simocyclinones behave strikingly differently from these compounds. Simocyclinone D8 is a potent inhibitor of gyrase supercoiling, wit...
متن کاملStructure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis.
Novobiocin and clorobiocin are gyrase inhibitors produced by Streptomyces strains. Structurally, the two compounds differ only by substitution at two positions: CH3 versus Cl at position 8' of the aminocoumarin ring and carbamoyl versus 5-methyl-pyrrol-2-carbonyl (MePC) at the 3"-OH of noviose. Using genetic engineering, we generated a series of analogs carrying H, CH3, or Cl at 8' and H, carba...
متن کاملDraft Genome Sequence of Streptomyces niveus NCIMB 11891, Producer of the Aminocoumarin Antibiotic Novobiocin
Streptomyces niveus NCIMB 11891 is the producer of the gyrase inhibitor novobiocin, which belongs to the aminocoumarin class of antibiotics. The genome sequence of this strain was found to contain, besides the gene cluster for novobiocin, a putative gene cluster for the macrolactam antibiotic BE-14106 and further secondary metabolite gene clusters.
متن کاملSynthesis, Structure and Antibacterial Activity of Potent DNA Gyrase Inhibitors: N′-Benzoyl-3-(4-Bromophenyl)-1H-Pyrazole-5-Carbohydrazide Derivatives
A total of 19 novel (3a-3s) N'-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohydrazide analogs were designed, synthesized, and evaluated for biological activities as potential DNA gyrase inhibitors. The results showed that compound 3k can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50 of 0.15 µg/mL and 0.25 µg/mL, respectively). Structure-activity r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 52 6 شماره
صفحات -
تاریخ انتشار 2008